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TALISES (This Ain’t a LInear Schrédinger Equation Solver) is an easy-to-use Python implementation of the Split-Step
Fourier Method, for numeric calculation of a wave function’s time-propagation under the Schrédinger equation.

As an introduction we recommend reading Usage and Examples Even more examples can be found here If you want
to learn about the employed algorithm for solving the Schrodinger equation read the notes
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CHAPTER 1

Usage and Examples

1.1 Freely expanding 1D Gaussian wave packet

Import the pytalises package

: import pytalises as pt

import numpy as np
import matplotlib.pyplot as plt

and instantiate a wave function constituent of 128 complex amplitudes that represent the wave function is position
space.

: psi = pt.Wavefunction ("exp (-x*x*x2)",

number_of_grid_points=(128,), spatial_ext=(-4,4))
print (psi.amp.shape)
plt.plot (psi.r, np.abs(psi.amp) *x*2)
plt.xlabel ("position")
plt.title("Prob. amplitude of wave function")

(128,)

Text (0.5, 1.0, 'Prob. amplitude of wave function')
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The wave packet can be freely propagated (meaning that V' = 0, or i0u(r,t) = 5=~V?(r,t)) using the
freely_propagate method.

plt.
.title("Prob. amplitude of wave function")
plt.
plt.

plt

: for i in range(5):

plt.plot (psi.r, np.abs(psi.amp)*%x2, label="t="+str(psi.t))
psi.freely propagate (num_time_steps=1, delta_t=0.25)
xlabel ("position™)

legend ()
grid()

Prob. amplitude of wave function

positicn

1.2 Free expansion with initial momentum

The wave funciton can be given an initial momentum of & by multiplying it with exp(ikz).

Chapter 1. Usage and Examples
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: psi = pt.Wavefunction('exp (- (x-x0)**2)xexp (1lj k*x)"',

variables={'x0"': -5.0, 'k': 10.0}, number_of_grid points=(128,),
spatial_ext=(-10,10))

The variables that we use in the string to generate the wave function can also be provided by a dictionary as done here.
The wave function is offset by o = —5.

: for i in range(5):

plt.plot (psi.r, np.abs(psi.amp)*+*2, label="t="+str(psi.t))
psi.freely_propagate (num_time_steps=1, delta_t=0.25)
plt.xlabel ("position")
plt.title("Prob. amplitude of wave function")

plt.legend()
plt.grid()
Prob. amplitude of wave function
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t=0.25
0g — t=0.5
— t=0.75
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After one time unit, the wave packet traveled 10 position units from —5 to 5, as expected with momentum k£ = 10.

Attention: This unitless representation is due to the fact that we did not define a mass (optional keyword argument m)
for the pytalises.Wavefunction class. In that case the Schrodinger equation simply became

i0(r,t) = %v%p(r, t).

The default value for the m keyword argument of the pytalises.Wavefunction class is numerically identical to
k. The Schrodinger equation that is solved in pytalises is actually

iOp(r,t) = <27:nv2 + %V(T,i/)(r, t),t))w(r, t).

Therefore, always keep in mind that the potential you define V' (r, ¢ (r, t), t) has to be divided by 7.

1.3 2D harmonic potential

Now we propagate a wavefunction in a potential V /i = %wixz + %wng (if not otherwise specified, the mass always
equals 7). Furthermore, we chose w, = w, = 271s~!. One period in the harmonic trap takes one second. The
Schrodinger equation is then

10 (z,y,t) = (;w%z +y7) + ;W)w(az, Y, t).

1.3. 2D harmonic potential 5
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Now we can use the propagate method of the pytalises.Wavefunction class to do so.

psi = pt.Wavefunction ("exp (- (x—2)**x2—-(y—2)**2)",
number_of_grid_points= (128,128), spatial_ext=[(-5,5), (-5,5)1])

fig, axs = plt.subplots (4, 4, sharex=True, sharey=True)
for i in range(4):
for j in range(4):
axs[i, j] .pcolormesh(psi.r[0], psi.r[l], np.abs(psi.ampxx2).T,
rasterized=True)
axs[i, j] .annotate ("t= ".format (psi.t), (-4.5,3), fontsize=8)\
.set_bbox (dict (facecolor="'white', alpha=0.5, edgecolor='black'"))
axs[i,j].grid()
psi.propagate ("l1/2+omega_x**x2xx*x2 + 1/2+omega_y*x2xy*x2",
variables={'omega_x': 2xnp.pixl, 'omega_y': 2*np.pixl},
diag=True, num_time_steps=10, delta_t=0.0125)
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For better demonstration we also animate the time evolution

from matplotlib import animation, rc

from IPython.display import HTML

def init () :
im.set_data (np.abs (psi.amp) **2)
return (im,)

def animate (i) :
psi.propagate ("l1/2+omega_x**2xxx*x2 + 1/2+xomega_y**x2xy*x2",
variables={'omega_x': 2+xnp.pixl, 'omega_y': 2%np.pixl},
diag=True, num_time_steps=1, delta_t=0.005)
im.set_data (np.abs (psi.amp) x*2)
return (im,)

psi = pt.Wavefunction ("exp (= (x=2)*x*x2—(y=2)*x2)",
number_of_grid_points= (128,128), spatial_ext=[(-5,5), (-5,5)])

fig, ax = plt.subplots|()
im = ax.imshow (np.abs (psi.amp) «*2,
vmin=0,
vmax=10+np.max (np.abs (psi.amp) x*2),
origin="'lower")
(continues on next page)
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(continued from previous page)
anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=200, interval=20, blit=True)
plt.close ()
HTML (anim.to_html5_video())

<IPython.core.display.HTML object>

One can see that the wave packet moves periodically with a frequency of one period per time unit in a diagonal line of
the 2D harmonic trap. One could also use the exp_pos method of the Wavefunction class that returns the mean
position of a wave function when called, in order to show the harmonic oscillation.

Note that we called the propagate method with the keyword argument diag=True. This makes the calculation
for the time propagation faster as no numerically diagonalization of the potential energy term is invoked (even though
with only one internal state, the potential V' can not have any nondiagonal terms).

: def time_propagate (diag) :

psi = pt.Wavefunction ("exp (= (x-2)**x2—(y—-2)**x2)",
number_of_grid_points= (128,128), spatial_ext=[(-5,5), (-5,5)1)
psi.propagate ("1/2xomega_x**2xx*%2 + 1/2xomega_y*+2xy**x2",
variables={'omega_x': 2*np.pixl, 'omega_y': 2+xnp.pixl},
diag=diag, num_time_steps=10, delta_t=0.0125)
$timeit time_propagate (diag=True)
Stimeit time_propagate (diag=False)

19.1 ms
25.7 ms

550 ps per loop (mean
423 ps per loop (mean

std. dev. of 7 runs, 100 loops each)

+
+ std. dev. of 7 runs, 1 loop each)

1.4 Rabi cycles in two level system

In this example a Gaussian wave packet in a ground state is coherently transferred to an excited state. During this the
wave packet will further disperse. The time evolution is described by
o) = 5 <QR b ) 102 o).

The well known Rabi model in addition of the kinetic term.

Attention: When defining the list of strings that describe the potential term V', be aware that for the
general case you must provide the lower triangular part of V.

Vit 'V
V= (Vi Vi
Vo1 Vag
you must pass the propagate method a list [V11, V21, Vv22]. We can omit the other element because Vo, =
V5 for hermitian matrices. That means if you have a nondiagonal potential V' describing the time evolution of a wave

function with Nj,, number of internal degrees of freedom, the Niy X Nj, matrix V is described by a list of matrix
elements of length %Nim(Nim +1).

For example if

Note: If you are using diag=True in the propagate method you only have to provide the diagonal
matrix elements V;; of V. Thus, the list is of length Njy,.

The Rabi frequency will be Qr = 27fr = 2mwls™!, such that after one time unit a complete population in-
version is achieved. We also keep track of the state occupation number of each internal state by calling the
state_occupation method each timestep.

1.4. Rabi cycles in two level system 7
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def init():
return (linel,line2,1line3,line4,)

def animate (i) :
pop0[i] = psi.state_occupation (0)
popl[i] = psi.state_occupation (1)
psi.propagate (["0", "2xpixf_R/2", "O"], variables={'f R': 1, 'pi': np.pi},
num_time_steps=1, delta_t=delta_t)
linel.set_ydata(np.abs (psi.amp[:,0]) **2)
1])

line2.set_ydata(np.abs (psi.amp[:,1])**2)
line3.set_ydata (pop0)
lined.set_ydata (popl)
return (linel,line2,1ine3,line4,)
psi = pt.Wavefunction(["exp (—x**x2)", "0"], number_of_grid_points=(64,),
spatial_ext=[(-5,5)], normalize_const=1.0 )
fig, axs = plt.subplots(2,1)
linel,line2, = axs[0].plot(psi.r, np.abs(psi.amp[:,0])**2, psi.r, np.abs(psi.amp|:,
—1]) x*2)
axs[0] .set_xlabel ("position")
axs[0] .set_ylabel ("population density")
axs[0] .set_x1lim(-5,5)
n_timesteps = 300
delta_t = 0.005
t = np.linspace (0, delta_ts*n_timesteps, num=n_timesteps)
pop0 = —np.ones(n_timesteps)
popl = -np.ones(n_timesteps)
line3,1line4, = axs[l].plot(t, popO, t, popl, marker=".", linestyle="", markersize=1)

axs[1l].set_xlabel ("time")
] .set_ylabel ("population")
axs[1l].set_ylim(0, 1)
1

axs[l] .set_x1im(0,delta_t+*n_timesteps)

anim animation.FuncAnimation (fig, animate, init_func=init,
frames=n_timesteps, interval=10, blit=True)

plt.close ()

HTML (anim.to_html5_video())
<IPython.core.display.HTML object>

Note that in this example we have a nondiagonal potential as the eigenstates interact. Thus we can not use the
diag=True option that was used in the previous example in order to speed up the calculations.

1.5 Diffraction on grating

In this example a 2d Gaussian wave packet is diffracted on a periodic potential. The library that is uses by pytalises to
evaluate mathematical expressions that describe wave functions or potentials is numexpr. A list of supported operators
and functions that you can use to construct your wave function or potential can be found here. In this specific example
we use the where (cond, a, b) function for realizing the potential. It either outputs a or b depending on whether
the condition cond is fulfilled or not.

Let’s plot the wave function and potential

import numexpr as ne

(continues on next page)
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(continued from previous page)

psi = pt.Wavefunction (

"exp (= ((x-x0) /sigmax) **2) xexp (- ( (y—-y0) /sigmay) **x2) xrexp (L jxky*y) ",
variables={'x0': 0, 'y0': -3, 'sigmax':5, 'sigmay': 1, 'ky': 3 1},
number_of_grid_points=(128,256),
spatial_ext=[(-10,10), (-10,10)1,

)
# String that describes the potential (see numexpr documentaiton for allowed_
—functions)
v = "where(y<.2, 1, 0)xwhere(y>-.2, 1, 0)x*where(cos(3*x)<0, 1, 0)=%1000"
potential = ne.evaluate(v, local_dict=psi.default_var_dict) [:,:,0]
plt.pcolormesh (psi.r[0], psi.r[l],

(np.abs (psi.amp*+*2)+tpotential) . T,

rasterized=True, vmax=np.max (np.abs (psi.amp**2)))

<matplotlib.collections.QuadMesh at 0x7£355c081cdO>
10.0
75
50
25

00

-10.0
=100 -75 50 25 00 25 50 75 10.0

We have given the wave function an initial momentum of k, = 3 and offset it by yo = —3. After one time unit the
center of mass will have collided with the periodic grating.

def init():
im.set_data (np.abs (psi.amp.T) x*x2)
return (im,)

def animate (i) :
psi.propagate (v, num_time_steps=5, delta_t=0.002, diag=True)
im.set_data ((np.abs (psi.amp**2)+potential) .T)
return (im,)

fig, ax = plt.subplots()

im = ax.imshow ((np.abs (psi.ampx«%2)+potential) .T,
origin='lower', vmax=np.max (np.abs(psi.ampx*x2)),
aspect="auto"')

anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=300, interval=10, blit=True)
plt.close ()

HTML (anim.to_html5_video())

1.5. Diffraction on grating 9
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<IPython.core.display.HTML object>

1.6 Nonlinear interactions between internal states

In addition to the variables x,y,z and t you can use wave function amplitudes in your defined potentials to solve a
nonlinear Schrodinger equation

iaﬂ/’(ﬂ t) = <2m h

o2y Ly, t)))w(r, 0

Depending on the number of internal states N your wave function has, the wave function amplitudes can be used in the
potential by calling psi0O, psil... psiN.

In this example we create a wave function with two internal states. The first one is going to be stationary in position
space whilst the other approaches it and scatters.

The equation that we solve is
170 0 1 o) [to(z t)]
= + -V e

def init():
return (linel,line2,)

def animate (i) :
psi.propagate (["0", "g/2xabs (psi0) xx2"],
variables={'g': 400},
num_time_steps=1, delta_t=0.01, diag=True)
linel.set_ydata(np.abs (psi.amp[:,0]) **2)
line2.set_ydata(np.abs (psi.amp[:,1]) **2)
return (linel,line2,)

psi = pt.Wavefunction (
["exp (- (x/2/sigmax) **2)", "exp (- ((x+x0) /2/sigmax) **x2) xexp (1 j*xkxx)"],
variables={'x0': 20, 'sigmax':2, 'k': 20 },
number_of_grid_points=(512,),
spatial_ext=(-30,30),
)

fig, ax = plt.subplots()

linel,line2, = ax.plot(psi.r, np.abs(psi.amp[:,0])*%2, psi.r, np.abs(psi.amp[:,1]) **2)
ax.set_xlabel ("position")

ax.set_ylabel ("population density")

anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=250, interval=10, blit=True)

plt.close()

HTML (anim.to_html5_video ())

<IPython.core.display.HTML object>

Now you should have a good overview of pytalises’ capabilities. For more interesting applications we recoomend
reading the additional examples page.

10 Chapter 1. Usage and Examples



CHAPTER 2

Additional Examples

In the following section more examples for using pytalises will be explored

: import pytalises as pt

import numpy as np
from matplotlib import pyplot as plt

2.1 Time-dependent Rabi model

In Usage and Examples the time-independent Rabi model was already simulated. The independence from ¢ is
achieved by going into a rotating frame. We will explore this possibility later in other examples. For now, we stick to
the regular Schrodinger picture of the Hamiltonian.

The system comprises of two internal states that differ in their energy by fw. An interaction is driven by a
time-periodic potential (e.g. electromagnetic wave). The complete potential is

$ exp(iwt)
— 2
V/ih= § exp(—iwt) w ’

where () is the Rabi frequency.
We generate the wave function and define the Rabi frequency:

: psi = pt.Wavefunction(["exp (—xxx2)","0"], number_of_grid_points=(256,),

spatial_ext=(-5,5), normalize_const=1.0)
V = ["0", "Omega_Rabi/2xexp(-1j*omegax*t)", "omega"]

f_Rabi =1
Omega_Rabi

= 2xnp.pixf_Rabi
pulse_length = 1/f_Rabi # One complete inversion
num_time_steps = 100

(continues on next page)
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(continued from previous page)

pop = np.zeros ((num_time_steps, 2)) # vector that saves the state population
time = np.zeros (num_time_steps)

We simulate the time-propagation for one time unit. Since the Rabi frequency is 27 we will achieve exactly one
inversion.

for i in range(num_time_steps) :
psi.propagate (V, num_time_steps=1,
delta_t=pulse_length/num_time_steps,

variables={"'Omega_Rabi': Omega_Rabi, 'omega': 10})
popli,:] = psi.state_occupation()
time[i] = psi.t

lines = plt.plot(time, pop)
plt.legend(lines, ('lg>', 'le>"))
plt.xlabel ("time")

plt.title("A Rabi cycle")

Text (0.5, 1.0, 'A Rabi cycle')

A Rabi cycle

104
0.8
0.6

— |g=

=
0.4
02 A
0.0 4

0.0 02 04 0.6 0a 10

time

2.2 Excitation with momentum transfer

One can also achieve excitation with momentum transfer |p) <> |p+ k) with periodic potentials with spatial periodicity
k. Ultimately this is what happens with monochromatic laser light that is o< expi(kxz — wt). Let us look a that in a
concrete example:

Note: In many examples we set i = m. Thus, the Schrodinger equation svoled is 9yt = %sz/) + %w.
Furthermore, this implies that in these simulations velocity and wave vector are the same v = 2 = % =
k. The numeric value for the mass of the simulated particle can be changed with the keyword argument m

inthe pytalises.Wavefunction class.

: psi = pt.Wavefunction(["exp (= (x+5)*%x2)","0"], number_of_ grid points=(256,),

spatial_ext=(-10,10), normalize_const=1.0)

(continues on next page)
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(continued from previous page)

lines = plt.plot(psi.r, np.abs(psi.amp) **2)
plt.legend(lines, ('lg>', 'le>"))

plt.xlabel ("position")

plt.title("Prob. amplitude of wave function")

Text (0.5, 1.0, 'Prob. amplitude of wave function')

Prob. amplitude of wave function
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Again, we have a two level system. We will excite the ground state to the excited state but this time the excited state
will gain momentum. The potential for a resonant excitation is

0 %expi((er%)tJrkx)

%exp—i((w+k—;)t+kx) w

V/h=

The frequency w has to be adjusted in order to drive a resonant excitation. There are two reasons for this. Firstly, the

2
momentum transfer results in an increase in kinetic energy %-. Furthermore, the state with gained velocity v

experiences a Doppler shift of the potential that decreases the seen frequency by —v - k. in Our case the initial
2
velocity is zero. The frequency has to be adjusted by 52— = %

The pulse will be applied for a quarter the time that it needs for an inversion. In this case we achieve a 50:50
superposition of excited and ground state.

: V.= ["0", "Omega_Rabi/2+exp(—1jx ((omegatkxx2/2)*t-kxx))", "omega"]

f_Rabi = 10

Omega_Rabi = 2+np.pixf_Rabi

pulse_length = 1/f_Rabi/4 # length for 50:50 beamsplitter pulse
num_time_steps = 100

pop = np.zeros((num_time_steps, 2))

time = np.zeros (num_time_steps)

for i in range (num_time_steps) :
psi.propagate (V, num_time_steps=1,
delta_t=pulse_length/num_time_steps,
variables={'Omega_Rabi': Omega_Rabi, 'omega': 10, 'k':10})
popli,:] = psi.state_occupation()
time[i] = psi.t
(continues on next page)

2.2. Excitation with momentum transfer 13
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lines =
plt.legend(lines,
plt.xlabel ("time")
plt.title("Half Rabi cycle")

plt.plot (time, pop)
("lg>",

Text (0.5, 1.0,

"le>"))

'Half Rabi cycle')

Half Rabi cycle

(continued from previous page)
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time

Indeed, we achieve an equal superposition. Lets have a look at our wave function in momentum space:

psi.fft ()
lines = plt.plot (psi.k,
plt.legend(lines, ('|g>",
plt.xlabel ("k")

plt.title("Prob.

Text (0.5, 1.0, 'Prob.

np.abs (psi.amp) «*2)
"le>"))

Prob. amplitude of wawve function

amplitude of wave function")

amplitude of wave function')

200 1 l

175 1

— lg=
|e=

T T T T
-40 -30 20 -10 o

in momentum space we also have an equal superposition of the states |p) and |p + k) = |p + 10). Of course this can

14
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also be seen by looking at the simple free propagation in position space:

psi.ifft () # transform back into r-space
for i in range(6):

linel, = plt.plot(psi.r, np.abs(psi.amp[:,0])=*%x2, 'CO-"',
line2, = plt.plot(psi.r, np.abs(psi.amp[:,1])*x2, 'Cl',

plt.grid (True)

psi.freely_propagate (num_time_steps=1, delta_t=0.2)

plt.legend([linel, 1line2], ('lg>', 'le>"))
plt.xlabel ("position")
plt.title ("Prob. amplitude of wave function")

Text (0.5, 1.0, 'Prob. amplitude of wave function')

Prob. amplitude of wave function

0.40 1
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0.30 1
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2.3 Three-level Raman transitions

100

alpha=.1+ix.15)
alpha=.1+ix.15)

In this section we derive the standard three-level Hamiltonian for Raman transitions and simulate the transition. First
we do this with no spatial dependency on the electromagnetic field (and therefore no momentum transfer) and then
extend this model to the physically relevant situation of imparting a large momentum via two-photon transition on the

wave-packet.

Raman transitions with no momentum transfer

The general aim of a Raman transition is to transfer probability amplitudes between two states via a third intermediate
state. In this example the three states are |wg), |w.) and |w;). The ground and excited state will be coupled to the
intermediate state with monochromatic light of frequencies w; and wa, but no direct coupling between the excited and

ground state is present.

A is the so called one-photon detuning. The Hamiltonian can be written as follow:

from sympy import =

x, t = symbols('x t', real=True)

Omega_1l, Omega_2 = symbols('\Omega_1 \Omega_2',
k 1, k_2 = symbols('k_1 k_2', real=True)
omega_1l, omega_2 = symbols('\omega_1 \omega_2',

real=True)

real=True)

(continues on next page)

2.3. Three-level Raman transitions
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(continued from previous page)

omega_g, omega_e, omega_i = symbols('\omega_g \omega_e \omega_i', real=True)
hbar = symbols ('\hbar', constant=True)

HO2 = Omega_1l/2+exp (I (k_lxx—omega_lxt))
H12 = Omega_1/2+exp (I (k_l+x—omega_2xt))
H = Matrix ([

[omega_g, 0, conjugate (H02) 1,
[0, omega_e, conjugate (H12) ],

[HO2, H12, omega_ill)

H

Qe i(—witt+ky@)

Wy 0 4i4447?44447

0 w Qle—i(fwthrklm)

e -2

i(—wyt+kqz) i(—wot+kqx)
Qe 21 1 Qe 22 1 w;

However, there is one problem in using this Hamiltonian for simulations: the frequency differences between the
internal states (e.g. w; — w,) for optical transitions are at least in the order of 10'2Hz. Thus, for simulations with high
numerical accuracy, one would need a very short step size in the time domain. In order to relax this we will transform
the Hamiltonian into a rotating frame in which the high frequency components will be removed.

The high frequency components of the wave function in the Schrédinger picture are removed by multiplying it with
the transformation matrix ¥; = R¥. The Hamiltonian describing the same dynamics is then H; = RHR' — iRRT.
We choose the frequencies of the rotating frame to be

R = Matrix ([

[exp (Ix (omega_i-omega_1) *t), 0, 0],
[o, exp (I* (omega_i-omega_2) *t), 01,
[0, 0, exp (Ixomega_ixt) ]
1)
R
eit(flerwi) 0 0
0 eit(—wg—i-wi) 0
0 0 eiwit

R can be somewhat arbitrarily chosen. This choice will yield a Hamiltonian only dependent on A. Let us perform the
transformation:

H_TI = RxHxconjugate (R) - IxRxconjugate(diff (R,t))
simplify (H_TI)
—iky@
w1+ wg — w; 0 She "2
—ikix
0 wo +we —w; e
Qleiklm Qleiklz
2 2 0

The time-dependencies on the nondiagonal elements have completely vanished. Looking at the above sketch of the
three-level system we see that the diagonal elements are wi + wy — wo = —A, wa + we —w; = —A and 0.

This is the potential we will use for the first simulation.
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A 0

volo ad
& 2
2 2

For now we will also neglect the spatial dependencies on k1 and ke. We will look at them in the next example when
we simulate the transition with momentum transfer.

Furthermore we actually use SI units from now on and simulate these Hamiltonian on a real world example: the
Rubidium-87 D,-line transitions. The intermediate state will be one of the 5%P; /2 states. The ground and excited
states are the 525, s2 F'=T1and F' = 2 states. Data for the atom’s energy levels can be found here

:m = 1.4447e-25 # Mass of a Rubidium atom

psi = pt.Wavefunction (["exp (- ((x-x0)/(2«sigma_x))**2)","0","0"],
number_of_grid_points=(128,), spatial_ext=(-10e-6,10e-6),
normalize_const=1.0, m=m,
variables={'x0': 0, 'sigma_x': le-6})

# List of strings describing the lower triangular part of V
V = ["7Delta", "O", "Omega/2", "7Delta", "omega/ZH’ "O"]

# omega_i-omega_g: energy difference between F'=3 and F=2 Rubidium-87 D2-lines
omega_ig = 2+np.pix384.230484468el2
# omega_e-omega_g: energy difference betwwen F=2 and F=1 of the 5%2 S_{1/2} manifold

omega_eg = 2xnp.pix6.8e9
# One-photon detuning of 700 MHz
Delta = 2xnp.pix700e6

The general Rabi frequency for such two-photon transitions is different from the Rabi frequency of the single-photon

transitions. Itis 2 = %. We calculate the single-photon Rabi frequencies 2; from the fact that we aim to achieve

Rabi cycles of the two-photon transition of length 100 ms.

f_Rabi = 1/100e-6

Omega = np.sqgrt (2+2+«np.pixf_Rabi x Delta)
pulse_length = 1/f_Rabi/4 # length for beamsplitter
num_time_steps = 100

pop = np.zeros ((num_time_steps, 3))

time = np.zeros (num_time_steps)

for i in range (num_time_steps) :
psi.propagate (V, num_time_steps=1,
delta_t=pulse_length/num_time_steps,
variables={'Omega': Omega, 'Delta': Delta})

popl[i,:] = psi.state_occupation ()
time[i] = psi.t
lines = plt.plot (time, pop)
plt.legend(lines, ('|g>', 'le>', '[i>"))

plt.xlabel ("time")
plt.title("Half Rabi cycle")

Text (0.5, 1.0, 'Half Rabi cycle')
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Half Rabi cycle

101 — o>
le=
08 — =
06
04 - "'f
02
00 - —
T T T T T T
0.0 05 10 15 20 25
time le—-5

After 25 us an equal superposition of ground and excited states is achieved. The intermediate state is only very
sparsely populated, but the probability amplitude is indeed transferred via the intermediate state as no nondiagonal

elements between ground and excited state exist.

At last let us have a look on the wave function in position and momentum space:

fig, axs = plt.subplots(2,1)
axs[0] .plot (psi.r,
axs[0] .set_xlabel ("position")

psi.fft () # Fouriier transform
axs[l] .plot (psi.k,
axs[1l] .set_xlabel ("k"™)

plt.tight_layout ()

np.abs (psi.amp) «*2)

np.abs (psi.amp) «*2)

200000 4
100000 -
I} L T T T T T T T T T
-1.00 -075 -050 -025 Q00 0.25 0.50 075 100
position le—5
1ed
10 1
05 1
00 4
T T T T T T T T T
=20 -15 -10 -05 0.0 05 14 15 20
k 1e7

Excited (orange) and ground (blue, but covered by orange) state cover exactly the same position and momentum
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states. That is of course boring. In the next calculation we will impart a large momentum on the wave-packet via the
two-photon transition.

Raman transitions with momentum transfer

In the previous simulation the wave vectors k; and k of the electromagnetic waves were neglected. In another
previous example it was also already shown that the off diagonal potential element o exp ikx leads to a momentum
transfer (after all exp ik« is the position/momentum translation operator). Stimulated excitation from |g) — |i) and
emission |i) — |e) with light sources 1 and 2 give the quantum state an additional momentum of k; — ks. If k1 and
ko are parallel to each other they do not impart a large momentum, but if anti-parallel they do!

This calculation differs also from the previous one for the fact that we have to adjust the energy differences of the
lasers as the wave-packet acquires kinetic energy % = W if undergoing the transition. This additional
energy difference between the two light sources will be called d. The level system is now looking like this:

The resonance condition also includes the term for the Doppler shift (k; — k2) - v. Here we assume v = 0. The
Hamiltonian is the one we derived earlier, but now we include the wave vectors k;.

We can almost completely proceed as done in the case without momentum transfer, only that we have to solve the
equation for the resonance condition to obtain a valid k; (the rest will be assumed as given).

m = 1.4447e-25
hbar = 1.0545718e-34
c = 299792458

psi = pt.Wavefunction (["exp (- ((x-x0)/ (2«sigma_x))**2)","0","0"],
number_of_grid_points=(512,), spatial_ext=(-20e-6,20e-6),
normalize_const=1.0, m=m,
variables={'x0': 0, 'sigma_x': 3e-6})

V = ["-Delta", "0", "Omega_Rabi/2+exp(lj*k_1%x)", "-(Delta+delta)", "Omega_Rabi/
—2xexp (1jxk_2xx)", "0"]

omega_ig = 2xnp.pix384.230484468el2
omega_eg = 2xnp.pix6.8e9

Delta = 2+np.pix700e6

f_Rabi = 1/100e-6

Omega_Rabi = np.sqrt(2+«2+np.pixf_Rabi » Delta)
omega_1l = omega_ig-Delta

k_1 = omega_1l/c

# solve resonance condition to acquire k_2
from scipy.optimize import root

k_2 = root (lambda k_2: hbar/2/m* (k_1-k_2)*+2 — (omega_l - cxnp.abs(k_2)) +_
—omega_eg, —-k_1).x

omega_ 2 = c*np.abs(k_2)

delta = omega_l-omega_2-omega_eg

pulse_length = 3/f Rabi/4 # length for 3xpi/2 beamsplitter pulse, just for fun
num_time_steps = 100

pop = np.zeros ((num_time_steps, 3))

time = np.zeros (num_time_steps)

(continues on next page)
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(continued from previous page)

for i in range (num_time_steps) :
psi.propagate (V, num_time_steps=1,
delta_t=pulse_length/num_time_steps,
variables={'Omega_Rabi': Omega_Rabi, 'c': c,
'omega_1l': omega_1l, 'k_1': k_1,
'omega_2': omega_2, 'k_2': k_2,
'Delta': Delta, 'delta': delta})
popli,:] = psi.state_occupation()
time[i] = psi.t
lines = plt.plot (time, pop)
plt.legend(lines, ('|g>', 'le>', '[i>"))
plt.xlabel ("time")
plt.title("One and a half Rabi cycle")

[47]: Text (0.5, 1.0, 'One and a half Rabi cycle')

One and a half Rabi cycle

i) 1 2 3 4 5 & 7
time le-5

Now if we take a look at the wave function ampltidues in k-space we will see that they are not only in a superposition
of energy states, but also momentum states.

[48]: psi.fft ()
lines = plt.plot(psi.k, np.abs(psi.amp)*x*2)
plt.legend(lines, ('|g>', 'le>', '[i>"))
plt.xlabel ("k")
plt.title("Prob. amplitude of wave function")

[48]: Text (0.5, 1.0, 'Prob. amplitude of wave function')
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129 Prob. amplitude of wave function

12 - |g=

&=

104 — |i=
08 1
0.6 1
04
0.2 1
0.0 A

T T T T T T T T T

-4 -3 -2 -1 0 1 2 3 4

k 1e7

The momentum is

: print (k_1-k_2)

[16105579.10347923]

just as expected.

Let us have a look now how the wave function evolves in position space

: psi.

for

plt.

plt
plt

ifft () # transform back into r-space

i in range (6):

linel, = plt.plot(psi.r, np.abs(psi.amp[:,0])*x2, 'CO-',
line2, = plt.plot(psi.r, np.abs(psi.amp[:,1])*x2, 'Cl',
plt.grid (True)

psi.freely propagate (num_time_steps=1, delta_t=2e-4)
legend((linel, line2), ('|g>', 'le>"))

.xlabel ("position")
.title("Prob. amplitude of wave function")

Text (0.5, 1.0, 'Prob. amplitude of wave function')

alpha=.1+ix.15)
alpha=.1+ix.15)

23.
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Prob. amplitude of wave function

70000
la=
20000 =
50000 1
40000 1
30000 1

20000 1

10000 1

-20 -15 -10 -05 00 05 10 15 20
positicn le-5

2.4 Single-Bragg diffraction

A very similar case to that of the three-level Raman transition is that of Bragg diffraction. Instead of coupling two
different states to achieve a momentum transfer, the Bragg transition just requires a ground state that is coupled to an
intermediate state with far detuned lasers.

Again, we will derive the Hamiltonian in the rotating frame. The Hamiltonian is a 2 x 2 matrix with off diagonal
elements constituent of the eletro-magnetic field of the two laser sources.

: x, t = symbols('x t', real=True)

Omega_1l, Omega_2 = symbols ('\Omega_1 \Omega_2', real=True)
k_ 1, k_ 2 = symbols('k_1 k_2', real=True)

omega_l, omega_2 = symbols('\omega_l \omega_ 2', real=True)
omega_g, omega_i = symbols('\omega_g \omega_i', real=True)
hbar = symbols('\hbar', constant=True)

HO1 = simplify((Omega_1/2+exp(I* (k_l+x—omega_l+t)) + Omega_2/2+exp (I (k_2+x—-omega_
—2%t))))

H = Matrix ([

[omega_g, conjugate (HO1) 1o
[HO1, omega_i 11)
H
wg Qleiwlgt—iklz + Q2eiw22tfik21
Qle*iwlf’*’iklm Qzefiwgfﬁ»ikgw
2 2 Wi

Applying the rotating frame yields

: R = Matrix ([[exp(I* (omega_i-omega_1)=t), 0],

[0, exp(Ix(omega_i+0xomega_2)~*t)]1])
H_ I = R+«Hxconjugate(R) - IxRxconjugate(diff(R,t))
simplify (H_TI)
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(Qlei(“’lt*klz)+Q2ei(“’2t*k2z))e*iwlt

w1 + Wy — wj )
(Qlei(fult#»klz)+QZei(7w2t+k2:))eiwlt
5 0

Substituting the definitions from the sketch for A and 4 this gives

H =g SA 2 exp(ikix) + £ exp(i(kaz + 6t)
=+ exp(—ikix) + 5% exp(—i(kax 4 dt)) 0

from scipy.optimize import root
m = 1.4447e-25

hbar = 1.0545718e-34

c = 299792458

psi = pt.Wavefunction (["exp (- ((x-x0)/(2xsigma_x))**2)","0"],
number_of_grid_points=(256,), spatial_ext=(-10e-6,10e-6),
normalize_const=1.0, m=m,

variables={'x0': 0, 'sigma_x': le-6})
V = ["-Delta", "Omega/2 x (exp(ljxk_1x*(x+vx*t))+exp(ljx(k_2* (x+vxt)+deltaxt)))", "0"]
v = 10
omega_ig = 2+np.pix384.230484468el2
Delta = 2xnp.pix700e6
f_Rabi = 1/300e-6
Omega = np.sqgrt (2x2+np.pixf_Rabi % Delta)
omega_1l = omega_ig-Delta
k_1 = omega_l/c
k_2 = root (lambda k_2: hbar/2/mx (k_1-k_2)*x2 + (k_1-k_2)*v - (omega_l — c*np.
—abs(k_2)) , -k_1).x
omega_2 = c*np.abs(k_2)
delta = omega_l-omega_2
pulse_length = 1/f_Rabi/4 # length for 50:50 beamsplitter pulse
num_time_steps = 100

The parameters are the same as in the other simulations and based on realistic experiments on Rubidium-87 atoms
driving transitions between the D, lines.

Let us finally simulate the time evolution:

plt.plot (psi.r, np.abs(psi.amp[:,0])*%x2, 'CO-', alpha=.1)
plt.plot(psi.r, np.abs(psi.amp[:,1])**2, 'Cl', alpha=.1)

psi.propagate (V, num_time_steps=num_time_steps,
delta_t=pulse_length/num_time_steps,
variables={'Omega': Omega, 'c': c, 'v
'omega_1'"': omega_1l, 'k_1': k_1,
'omega_2': omega_2, 'k_2': k_2,
'Delta': Delta, 'delta': delta})

'owv,

for i in range(l,6):
linel, = plt.plot(psi.r, np.abs(psi.amp[:,0])*%x2, 'CO-', alpha=.1+ix.15)

(continues on next page)
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line2, = plt.plot(psi.r, 'cl’',
plt.grid(True)
psi.freely_propagate (num_time_steps=1,
plt.legend([linel, 1line2], ('lg>', 'le>"))
plt.xlabel ("position")
plt.title ("Prob. amplitude of wave function")

np.abs (psi.amp[:,1]) **2,

delta_t=1le-4)

Text (0.5, 1.0, 'Prob. amplitude of wave function')

Prob. amplitude of wave function

700000 - = |g=
|e=
BO0000 -
500000 -
400000 - o
300000
200000 -
100000 -
D_
T T T T T T T T T
-1.00 —0.75 -050 -0.25 000 025 050 075 100
position le—-5

(continued from previous page)

alpha=.1+ix.15)

As one can see the excited state is almost not populated, but a superposition of momentum states in the ground state

is achieved. As the wave-packets separate they shortly interfere.
Looking at the momentum representation

: psi.fft ()

line = plt.plot (psi.k,
plt.legend(line, ('|g>"',
plt.xlabel ("k")

plt.title("Prob.

np.abs (psi.amp) x*2)
'le>"))

amplitude of wave function")

Text (0.5, 1.0, 'Prob. amplitude of wave function')
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128 Prob. amplitude of wave function
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one can see that there is also a very small population in the momentum state —(k; — k2). This is due to the finite pulse

length of the laser pulse. Shorter pulses populate different momentum states even more. Try it out!

2.5 2D Single-Bragg diffraction with Gaussian beam

Let’s make the previous example slightly more realistic with a 2D Gaussian beam.
The wave function is a 2D Gaussian wave packet

: psi = pt.Wavefunction(["exp (- ((x-x0)/ (2xsigma_x))*x2)xexp (- ((y-y0)/ (2xsigma_y))**2)",
s "O" ] ,
number_of_grid_points=(2048,256), spatial_ext=[(-30e-6,90e-6), (-40e-6,40e-6)1],

normalize_const=1.0, m=m,
variables={'x0': 0Oe-6, 'sigma_x': 10e-6, 'y0': 0e-6, 'sigma_y': 10e-6})

fig = plt.figure(figsize=(6.4, 4.8))

ax = fig.add_subplot ()

ax.pcolormesh (psi.r[0], psi.r[l], np.abs(psi.amp[:,:,0].T)**2, rasterized=True)
ax.set_aspect ("equal™)

ax.set_title("Initial wave function density")

Text (0.5, 1.0, 'Initial wave function density')

2.5. 2D Single-Bragg diffraction with Gaussian beam
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1e—5 Initial wave function density

le—5

that will be subjected to this more realistic Bragg transition.

The eletric field amplitudes from the prevous example will be exchanged for that of a Gaussian beam. The other
parameter will stay the same.

m = 1.4447e-25
hbar = 1.0545718e-34
c = 299792458

v =20

omega_ig = 2xnp.pix384.230484468el2

Delta = 2xnp.pix700e6

f_Rabi = 1/400e-6

Omega = np.sqgrt (2+x2+np.pixf_Rabi % Delta)

omega_l = omega_ig-Delta

k_1 = omega_1l/c

k_2 = root (lambda k_2: hbar/2/m* (k_1-k_2)*+2 + (k_1-k_2)*v — (omega_l — cxnp.
—abs(k_2)) , —-k_1).x

omega_ 2 = c*np.abs(k_2)

delta = omega_l-omega_2

pulse_length = 1/f Rabi/4 # length for 50:50 beamsplitter pulse

num_time_steps = 10

wO_1 = 7.5e-6 # width of first Gaussian beam

zR_1 = w0_1%xx2 %= k_1 / 2 # Rayleigh range

w0_2 = 7.5e-6 # width of second Gaussian beam

zZR_2 = w0_2%%2 x k_ 2 / 2

Amp_gauss_1 = "1/sqgrt (1+(x/zR_1)*%2) % exp(—(y/ (wO_lxsqgrt (1+(x/zR_1)*%2)))*x*2 + 1* (k_
Slxy**2/ (2xx* (1+ (zR_1/x) **2)) + k_1*x — arctan(x/zR_1)) )"

Amp_gauss_2 = "1/sqrt (1+(x/zR_2)*%x2) * exp(—(y/ (WwO_2+sqgrt (1+(x/zR_2)**2)))*x*x2 + 1% (k_
S2xy**x2/ (2xx* (1+ (z2R_2/x) *x2)) + k_2xx — arctan(x/zR_2)) )"

V = ["-Delta", "Omega/2 * ("+Amp_gauss_1+"+"+Amp_gauss_2+"*xexp (1ljxdeltaxt) )", "0"]

26 Chapter 2. Additional Examples



pytalises, Release 0.2.7

We take a look at the absolute magnitude of the potential’s nondiagonal element:

U = pt.Propagator(psi, V, variables={'Omega': Omega, 'c': c, 'v': v,
'omega_1': omega_1l, 'k_1': k_1, 'wO_1': wO_1, 'zR_1': zR 1,
'omega_2': omega_2, 'k_2': k_2, 'w0_2': w0_2, 'zR_2': zR 2,
'Delta': Delta, 'delta': delta}l)

U.eval_V ()

fig = plt.figure()

ax = fig.add_subplot ()

ax.pcolormesh (psi.r[0], psi.r[l], np.abs(U.V_eval_array[:,:,0,1,0].T)*%x2,
—rasterized=True)

ax.set_aspect ("equal™)

ax.set_title("Intensity of interfering Gaussian beams")

Text (0.5, 1.0, 'Intensity of interfering Gaussian beams')

1e—5 Intensity of interfering Gaussian beams

(Note that we used the pytalises.Propagator class for this. This class is used in the backend to propagate a
pytalises.Wavefunction object, but otherwise not used in the examples. You can read more about it in the
APL)

One can clearly see the interference pattern of the two counterpropagating Gaussian beams as well as their curvature.
Now let us performed the Bragg pulses and see what happens to the wave function.

psi.propagate (V, num_time_steps=num_time_steps,
delta_t=pulse_length/num_time_steps,
variables={'Omega': Omega, 'c': c, 'v': v,
'omega_1': omega_1l, 'k_1': k_1, 'wO_1': wO_1, 'zR_1': zR_ 1,
'omega_2': omega_2, 'k_2': k_2, 'w0_2': w0_2, '"zR_2': zR 2,
'Delta': Delta, 'delta': delta})

n_plots = 5
vmax = np.max (np.abs(psi.amp[:,:,0].T)**2)
fig = plt.figure(figsize=(6.4, n_plots*4.8))
for i in range(n_plots-1):
psi.freely_propagate (num_time_steps=1, delta_t=1le-3)

(continues on next page)

2.5. 2D Single-Bragg diffraction with Gaussian beam 27



pytalises, Release 0.2.7

(continued from previous page)
ax = fig.add_subplot (n_plots,1,i+1l, adjustable="box")
ax.pcolormesh(psi.r[0], psi.r[1l], np.abs(psi.amp[:,:,0].T)**2, rasterized=True,

—vmax=vmax)
ax.set_aspect ("equal")
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Since we made the Gaussian beams’ waists smaller than the wave function it is only partially subjected to the Bragg
transition and a big part of it stays unaffected. However, the inner part experiences the momentum kick.

2.6 Light-pulse atom interferometry with single Bragg diffraction

In this example we simulate the separation and recombination of a wave-packet that has been subjected to laser
pulses inducing Bragg diffraction. In contrast to the previous example of Bragg diffraction that used the physically
accurate description of a two-level system, we employ an effective description of a one-level system with a
wave-packet scattered by a periodic potential resembling a crystal (hence the connection with Bragg).

We start with a gaussian wave packet offset by -25 position units and zero moneutm k£ = 0.

: psi = pt.Wavefunction ("exp (- ((x-x0)/ (2+xsigmax))**2)", number_of_grid_points=(1024,),

spatial_ext=(-75,75), variables={'x0': -25, 'sigmax': 5})

def init_plot():
fig = plt.figure()
axs = fig.subplots(2,1)
linel, = axs[0].plot(psi.r, np.abs(psi.amp)*x*2)
axs[0] .grid()
axs[0] .set_ylim (0, 1)
axs[0] .set_xlabel ("position")
psi.fft();
line2, = axs[1l].plot (psi.k, np.abs(psi.amp)*=*2)
axs[1].grid()
axs[l].set_xlabel ("momentum")
psi.ifft();
fig.tight_layout ()
return fig, axs, linel, line2

fig, axs, linel, line2 = init_plot ()
100
0.75 A
0.50 1
0.25 1
DUG T T T T T T T T T
—20 —al =40 =20 0 20 40 B0 a0
positicn
15000 4
10000
5000 1
D L T T T T T
—20 =10 0 10 20
momentum

You see the wave function in position and momentum representation. In position space it is ineed offset and in
momentum space centered at 0.
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We will now perform the first Bragg pulse. The effective potential is
V(z,t)/h = 2Qcos?(k(x — kt)),

with Rabi frequency €2 and wave vector k. This potential drives transitions between the momentum states |[p) <«
|p + 2k). In this case we set k = 5 and 2 = 27. A beamsplitter 7r/2 pulse is achieved after t = %/2

from matplotlib import animation, rc

from IPython.display import HTML

def animate_bragg_pulse (i) :

psi.propagate ("2x0Omegaxcos (kx (x—kxt))**2", num_time_steps=1,

delta_t=t_end/num_time_steps, variables={"Omega": 2+np.pixf_R, "k": 5},

—diag=True)

linel.set_ydata(np.abs (psi.amp) *x%2)

psi.fft ()

line2.set_ydata (np.abs (psi.amp) *%2)

psi.ifft ()

return (linel, line2)

fig, axs, linel, line2 = init_plot ()

f R = 2 # Rabi frequency in Hertz
t_end = 1/ (4xf_R) # 50:50 beamsplitter
num_time_steps = 100

anim = animation.FuncAnimation(fig, animate_bragg_pulse, frames=num_time_steps,
—interval=20, blit=True)

plt.close ()

HTML (anim.to_html5_video ())

<IPython.core.display.HTML object>

As expected the pulse results in an equal superposition of momenutm states |p) and |p + 2k).

In position space we already start to see interference from now two wave packets moving apart.

The wave function is now freely propagated for 5 time units such that both wave packets are seperated by kt = 50
position units.

def animate_freeprop (i) :
psi.freely_propagate (num_time_steps=1, delta_t=t_end/num_time_steps)
linel.set_ydata (np.abs (psi.amp) *x%2)
psi.fft ()
line2.set_ydata (np.abs (psi.amp) x%2)
psi.ifft ()
return (linel, line2)

fig, axs, linel, line2 = init_plot ()

t_end = 5

anim = animation.FuncAnimation(fig, animate_freeprop, frames=num_time_steps,
—interval=20, blit=True)

plt.close()
HTML (anim.to_html5_video())
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<IPython.core.display.HTML object>

Now we will apply a mirror 7 pulse that will invert the momentum states in order to recombine both wave packets.
fig, axs, linel, line2 = init_plot ()
t_end = 1/ (2«f_R) # mirror pulse

anim = animation.FuncAnimation(fig, animate_bragg_pulse, frames=num_time_steps,
—interval=20, blit=True)

plt.close ()

HTML (anim.to_html5_video ())

<IPython.core.display.HTML object>

Now the right wave packet will be in momentum state |p) and the left in |p 4+ 2k). They propagate freely for the same
time they were seperating after the first pulse.

fig, axs, linel, line2 = init_plot ()

t_end = 5

anim = animation.FuncAnimation(fig, animate_freeprop, frames=num_time_steps,
—interval=20, blit=True)

plt.close()
HTML (anim.to_html5_video())

<IPython.core.display.HTML object>

Now that they are spatially overlapping we can recombine them with a final beamsplitter pulse.

fig, axs, linel, line2 = init_plot ()

t_end = 1/(4xf_R) # 50:50 beamspliter pulse

anim = animation.FuncAnimation(fig, animate_bragg_pulse, frames=num_time_steps,
—interval=20, blit=True)

plt.close ()
HTML (anim.to_html5_wvideo ())

<IPython.core.display.HTML object>

Let’s have a final look at the wave function

init_plot ();
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The wave function is, again, completely in its initial momentum state but has travelled the 50 position units. One can

also see some interference due to imperfect beamsplitter operations to auxiliary states.

2.6. Light-pulse atom interferometry with single Bragg diffraction
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CHAPTER 3

Notes

3.1 Split-Step-Fourier method

Defining a time-propagator U (¢, to) with its action on the wave function W(t) = U(¢,t)¥(to) and insert it into the
Schrodinger equation, we obtain
d

ih=—U (1) U(t) = H(OU (t,0)¥(2).

A solution to this is the well known Dyson series

. ty
Ult,to) =1 — 3/ dt H(t) + (— ) / dtl/ dtoH (1) H(t2) +
h to t() t(J

which can be simplified using the time-sorting operator T
. i [t
U(t,tg) =T exp [ - 7/ H(t/)dt']
b Jy,

The naive intuition of the time propagator to be exp[—¢ f to H(t')dt'], neglecting the time-sorting, is generally not
true. If this naive ansatz is inserted into the Schrodinger equation one might expect the equality to hold, however,
the time derivative of an exponentiated operator is only well defined if it is diagonal. Yet, generally a Hamiltonian
does not commute with itself at different times [H (¢1), H(t2)] # 0, hence they do not have the same eigenbasis
and time-sorting has to be applied. Nonetheless, as an approximation for small time steps At, we will assume that
[H(t), H(t + At)] = 0 holds and the naive ansatz for the time propagator can be used. (That the commutator relation
[H(t), H(t + At)] = 0 leads to U(t,to) ~ exp[—+ f +, H (t1)dt1] can be even better understood using the Magnus
expansion of the time propagator:

Ult,tg) =1— % 5 H(tl)dtl + ; ( - ) / dty /tl dto[H (t1), H(t2)] + .

The Dyson series is described, because it is the common way of writing down U (¢, tp).)
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Hence, we define the time evolution of a state to be approximately
Ut + At m T IO 1),

The Hamiltonian consists of a kinetic 7" and potential V' part. As it is intended to evolve the state vector incrementally
over time steps of length At, it is necessary to calculate the exponential function of a sum of two operators. Since
V is dependent on 7 and the kinetic part consists of the Laplacian operator, it follows (because [V (), 92] # 0) that
for the operation exp[i [(T + V') At] applied to a wave function, it can generally not be expressed in an appropriate
eigenbasis, as both parts are not simultaneously diagonalizable.

Therefore, the Hamiltonian is split into two parts to diagonalize them separately. The potential V' (7, t) is diagonal in 7

— -, 2772
space, while the kinetic part is diagonal in k-space as T'(k) = — h27’fL . However, whereas for ordinary scalar quantities
et — eaeb holds, it does not for non-commuting operators. For this, we have to use the Lie-Trotter-Suzuki formula.

This formula can be derived from the Baker—Campbell-Hausdorff relation which states

—H(T+V)At _ ef%TAt .efi,;lvm + efh’Q[T,V]AtQ + O(At3).

e
This equation would lead to accuracy of order At if terms with commutators would be neglected. However, the
equation can be brought into the form of the Symmetric-Strang-Splitting.

e H(THVIAL — =3 T5 o= aVAL =TS L O(AL)
which improves the accuracy by one order, without significant additional computational effort.\ Having split the
Hamilton-operator into three operators, which can all be applied subsequently if the wave function is in an appro-
priate basis, we can evolve the wave function in time with the following algorithm:

1. The initial wave function is Fourier-transformed (7, t) — F[o (7, )] = ¢ (k, t)
2. The first operator is applied to the wave function ¢ (k, t + a8ty = ei%“a?%l/}(l;, t)

3. Fourier transformation of ¢ back into 7-space ¥ (k, t + &y 5 7! [ (k,t + S =7t + 4L)

4. Phase correction due to potential and nonlinearity over the entire interval (7t + %)

e—%V(F,t-&-%)Atw(F’ t+ %)

—

5. Fourier-transformation into k -space (7, t + S = Fly(Ft+ 5] = (K, t+ ah

o ([ 4t

6. The operator of the second kinetic half-time-step is applied ¥ (k, ¢ + At) = e'zm 1/)(13, t+ %)

7. Last Fourier transformation into 7 -space (K, t + At) — FL[p(k, t + At)] = (7, t + At)

Using this algorithm, the initial wave function is propagated in time (7, t) — (7, t + At), just as described by
formula of the symmetric Strang splitting.

3.2 Importance of sampling frequency

The split-step Fourier method uses position and momentum space to calculate the wave-function’s time-propagation.
Therefore, one hast to keep in mind that the momentum state of the wave-function can only be correctly accounted
for if the space-grid has enough sampling points.

This means that if Az is the whole position space consisting of N samples, we have a sampling rate of dz = Az/N.
If we Fourier transform any wave-form, we can safely represent momentum states within Ak = 27 /dz. The
sampling rate in momentum space is 6k = 27 /Ax.
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3.3 Importance of number of sampling points

Fast Fourier Transforms (FFTs) are fastet if the number of grid points of your spatial grid is a multiple of 2 e.g.: 256,
2048 etc. As every timestep involves at least two FFT we advice you to do so.
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CHAPTER 4

APl / Code Reference

4.1 Submodules

4.2 pytalises.wavefunction module

The Wavefunction class and its attributes.

class pytalises.wavefunction.Wavefunction (psi, number_of _grid_points, spatial_ext,

t0=0.0, m=1.054571817e-34, variables={},
normalize_const=None)

Bases: object

Class describing wave function.

Parameters

psi (string list of strings) — Each string describes the initial amplitude in r-
space of the wave function. The number of elements is the number of internal degrees of
freedom. Additional variables that are used in psi can be defined in the optional parameter
variables. Predefined variables are the spatial coordinates x,y,z and time t.

number_of_grid_points (tuple of ints) — Tuple that defines the number of
grid points (nX,nY,nZ) of the wave function

spatial_ext (1ist of tuples)-The supplied values define the boundary positions
of the grid and thus define the actual coordinate system.

t0 (float, optional)— Internal time of wave function. Default is 0.0.

m (float, optional) — Mass of particle described by the wavefunction. Default is
1.054571817e-34 (numerically equal to hbar).

variables (dict) — Dictionary of additionally used variables in the definition of the
wave function in psi. Predefined variables are the spatial coordinates x,y,z and time t.
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e normalize_const (float, optional) — Normalizes the wave function such that
the integral of [Psil*2 over all internal and external degrees of freedom equals normal-
ize_const

num_int_dim
The number of internal degrees of freedom

Type int

num_ex_dim
The number of external degrees of freedom

Type int

The arrays are the evenly spaced spatial coordinates as defined through definition of spatial_ext and num-
ber_of_grid_points

Type list of 1d arrays

The arrays are the evenly spaced inverse spatial coordinates as defined through definition of spatial_ext
and number_of_grid_points

Type list of 1d arrays
Examples

Wavefunction with two internal states where the first state is gaussian distributed in 1d r-space and the second
state is not occupied at all.

>>> from pytalises import Wavefunction

>>> psi = Wavefunction(["exp (- ((x-x0)/a0)*%2)", "0.0"],
(16,), [(-2,2),], variables={'a0':1/2, 'x0':0})

>>> print (psi.num_int_dim)

2

>>> print (psi.num_ext_dim)

1

>>> print (psi.amp)
[1.12535175e-07+0.3 0.00000000e+00+0. 7]

[

[6.03594712e-06+0.3 0.00000000e+00+0.7]

[1.83289361e-04+0.3 0.00000000e+00+0.7]

[3.15111160e-03+0.3 0.00000000e+00+0.7]

[3.06707930e-02+0.3 0.00000000e+00+0.7]

[1.69013315e-01+0.3 0.00000000e+00+0.7]

[5.27292424e-01+40.3 0.00000000e+00+0.7]

[9.31358402e-01+0.3 0.00000000e+00+0.7]

[9.31358402e-01+0.3 0.00000000e+00+0.7]

[5.27292424e-01+40.3 0.00000000e+00+0.7]

[1.69013315e-01+0.3 0.00000000e+00+0.7]

[3.06707930e-02+0.3 0.00000000e+00+0.7]

[3.15111160e-03+0.3 0.00000000e+00+0.7]

[1.83289361e-04+0.3 0.00000000e+00+0.7]

[6.03594712e-06+0.3 0.00000000e+00+0.7]

[1.12535175e-07+0.3 0.00000000e+00+0.731711]

>>> print (psi.r)

[array ([-2. , —1.73333333, -1.46666667, —-1.2 , —0.93333333,
-0.66666667, —-0.4 , —0.13333333, 0.13333333, 0.4 ,

(continues on next page)

40

Chapter 4. API/ Code Reference




pytalises, Release 0.2.7

(continued from previous page)

0.66666667, 0.93333333, 1.2 , 1.46666667, 1.73333333,
2. 1), array([0.]), array([0.])]

amp
Ndarray of the wave function amplitudes.

construct_FFT (num_of _threads=1, FFTWflags=("FFTW_ESTIMATE”,

"FFTW_DESTROY _INPUT’))
Construct pyfftw bindings.

exp_pos (axis=None)
Calculate the expected position on given axis.

Calculates the mean position of Psi on chosen axis. Axes 0,1,2 correspond to x,y,z. The other two axes are
traced out. If no axis iv given returns array of mean position of all external degrees of freedom.

freely_propagate (num_time_steps, delta_t, num_of _threads=1,
FFTWflags=('FFTW_ESTIMATE’, '’FFTW_DESTROY_INPUT’))
Propagates the Wavefunction object in time with V=0.

Function that can propagate the wavefunction if no potential is present.
Parameters

* num_time_steps (int) — Number of times the wavefunction is propagated by time
delta_t using the Split-Step Fourier method.

* delta_t (float) - Time increment the wavefunction is propagated in one time step.

e num of_threads (int, optional)- Number of threads uses for calculation. De-
fault is 1.

* FFTWflags (tuple of strings) — Options for FFTW planning [1]. Default is
(‘FFTW_ESTIMATE’, ‘FFTW_DESTROY_INPUT",).

References

[1] http://www.fftw.org/fftw3_doc/Planner-Flags.html

(list of) array of the wave function position axes.

normalize_ to (n_const)
Normalize the wave function.

Normalizes the wave function such that the integral of IPsil*2 over all internal and external states equals
n_const

propagate (potential, num_time_steps, delta_t, **kwargs)
Propagates the Wavefunction object in time.

Function that propagates the wavefunction using a Split-Step Fourier method [1].

Parameters

e potential (string list of strings)— This list contains the matrix elements
of the potential term V in string format. If the potential has nondiagonal elements (see
optional parameter diag) each elements represents one matrix element of the lower trian-
gular part of V. For example a 3x3 potential with nondiagonal elements would be of form
potential=[HO0, H10, H20, H11, H21, H22]. If the potential term is supposed to have only

4.2,

pytalises.wavefunction module 41


http://www.fftw.org/fftw3_doc/Planner-Flags.html

pytalises, Release 0.2.7

diagonal elements (diag=True), the potential parameter for a 3x3 potential would look like
potential=[HOO,H11,H22].

* num_time_ steps (int) — Number of times the wavefunction is propagated by time
delta_t using the Split-Step Fourier method.

* delta_t (float)- Time increment the wavefunction is propagated in one time step.

* variables (dict, optional) — Dictionary containing values for variables you
might have used in potential

e diag (bool , optional) - If true, no numerical diagonalization has to be invoked
in order to calculate time-propagation as nondiagonal elements are omitted. This makes
the computation much faster. Default is False.

e num of_threads (int, optional)- Number of threads uses for calculation. De-
fault behaviour is to use all threads available.

* FFTWflags (tuple of strings) — Options for FFTW planning [2]. Default is
(‘FFTW_ESTIMATE’, ‘FFTW_DESTROY_INPUT",).

References

[1] https://en.wikipedia.org/wiki/Split-step_method [2] http://www.fftw.org/fftw3_doc/Planner-Flags.
html

(list of) array of the wave function position axes.

state_occupation (nth_state=None)
Return occupation number of nth internal state.

Evaluates the spatial integral over IPsil*2 for the nth internal state. If none is given a vector of the occupa-
tion number of all internal states is returned.

var_pos (axis=None)
Calculate the variance on given axis.

Calculates the variance in position of Psi on chosen axis. Axes 0,1,2 correspond to x,y,z. The other two
axes are traced out. If no axis iv given returns array of variance position of all external degrees of freedom.

pytalises.wavefunction.assert_type or_list_ of_type (argument, wished_type)

4.3 pytalises.propagator module

Module containing functions that help propagating the Wavefunction class.

class pytalises.propagator.Propagator (psi, potential, variables={},
diag=False, num_of _threads=1,
FFTWflags=(’FFTW_ESTIMATE",

"FFTW_DESTROY_INPUT’))
Bases: object

Class for propagating instances of the Wavefunction class.
Parameters

* psi (Wavefunction)— The Wavefunction object the Propagator class acts on
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* potential (list of strings) — This list contains the matrix elements of the po-
tential term V in string format. If the potential has nondiagonal elements (see optional
parameter diag) each elements represents one matrix element of the lower triangular part
of V. For example a 3x3 potential with nondiagonal elements would be of form poten-
tial=[HO0, H10, H20, H11, H21, H22]. If the potential term is supposed to have only
diagonal elements (diag=True), the potential argument for a 3x3 potential would look like
potential=[HOO,H11,H22].

* variables (dict, optional)- Dictionary containing values for variables you might
have used in potential

* diag (bool , optional) - If true, no numerical diagonalization has to be invoked in
order to calculate time-propagation. Default is False.

e num of threads (int, optional)- Number of threads uses for calculation. De-
fault is 1.

* FFTWflags (tuple of strings) — Options for FFTW planning [1]. Default is
(‘FFTW_ESTIMATE’, ‘FFTW_DESTROY_INPUT",).

References

[1] http://www.fftw.org/fftw3_doc/Planner-Flags.html

class Potential (potential_string, variables={}, diag=False)
Bases: object

Simple class for collecting information about the potential.

diag_potential_prop (delta_t)
Calculate exp(i*V/hbar*delta_t)*Psi by simple matrix multiplication.

This method is used if the potential matrix V is diagonal. This is much faster than nondiag_potential_prop
and should be used if possible.

eval_V ()
Evalutes V on the whole spatial grid.

The result is saved in Propagator.V_eval_array.

eval_diag V()
Evalutes diagonal elements of V on the whole spatial grid.

The result is saved in Propagator.V_eval_array.

kinetic_prop (delta_t)
Perform time propagation in k-space.

Transforms the Wavefunction into k-space, calculates exp(i*hbar/(2m)*k**2*delta_t)*Psi(kx,ky,kz) and
transforms it back into r-space.

nondiag_potential_prop (delta_t)
Calculate exp(i*V/hbar*delta_t)*Psi using numerical diagonalization.

This method has to be used if the potential matrix has nondiagonal elements.

potential_ prop (delta_t)
Wrap function that calculates exp(i*V(x,y,z)/hbar*delta_t)*Psi(x,y,z).

This can be either nondiag_potential_prop or diag_potential_prop.
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pytalises.propagator.freely_propagate (psi, num_time_steps, delta_t, num_of threads=1,
FFTWflags=('FFTW_ESTIMATE",

"FFTW_DESTROY_INPUT’))
Propagates a Wavefunction object in time with V=0.

Function that can propagate the wavefunction if no potential is present.
Parameters
* psi (Wavefunction) - The Wavefunction object the Propagator class acts on

* num_time_steps (int) — Number of times the wavefunction is propagated by time
delta_t using the Split-Step Fourier method.

* delta_t (float)— Time increment the wavefunction is propagated in one time step.

e num of threads (int, optional) - Number of threads uses for calculation. De-
fault is 1.

* FFTWflags (tuple of strings) — Options for FFTW planning [1]. Default is
(‘FFTW_ESTIMATE’, ‘FFTW_DESTROY_INPUT",).

References

[1] http://www.fftw.org/fftw3_doc/Planner-Flags.html

pytalises.propagator.get_eig
Calculate eigenvectors and eigenvalues of matrices in array.

JIT-compiled function that calculates the eigenvectors and eigenvalues of input array M in parallel using numba.
The resulting eigenvectors are stored in the input matrix and the eigenvalues in the array eigvals.

Parameters
e M(3d array of (NxN) arrays)-
* eigvals (3d array of 1d arrays with N elements)—

pytalises.propagator.propagate (psi, potential, num_time_steps, delta_t, **kwargs)
Propagates a Wavefunction object in time.

Function that propagates the wavefunction using a Split-Step Fourier method [1].
Parameters
* psi (Wavefunction)— The Wavefunction object the Propagator class acts on

* potential (string list of strings)— This list contains the matrix elements of
the potential term V in string format. If the potential has nondiagonal elements (see op-
tional parameter diag) each elements represents one matrix element of the lower triangular
part of V. For example a 3x3 potential with nondiagonal elements would be of form po-
tential=[HOO, H10, H20, H11, H21, H22]. If the potential term is supposed to have only
diagonal elements (diag=True), the potential parameter for a 3x3 potential would look like
potential=[HO0,H11,H22].

* num_time_steps (int) — Number of times the wavefunction is propagated by time
delta_t using the Split-Step Fourier method.

* delta_t (float)— Time increment the wavefunction is propagated in one time step.

* variables (dict, optional)- Dictionary containing values for variables you might
have used in potential
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* diag (bool , optional) - If true, no numerical diagonalization has to be invoked in
order to calculate time-propagation as nondiagonal elements are omitted. This makes the
computation much faster. Default is False.

e num of threads (int, optional) - Number of threads uses for calculation. De-
fault behaviour is to use all threads available.

* FFTWflags (tuple of strings) — Options for FFTW planning [2]. Default is
(‘FFTW_ESTIMATE’, ‘FFTW_DESTROY_INPUT",).

References

[1] https://en.wikipedia.org/wiki/Split-step_method [2] http://www.fftw.org/fftw3_doc/Planner-Flags.html
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Indices and tables
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* modindex

e search
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